\n
2016 has seen technologies such as IoT<\/a>, automation and cognitive computing moving beyond the concept stage. Experts opine that consumer-oriented technologies behind Pokémon Go (featuring world-class augmented reality) and the launch of smart home solutions like Google Home and Amazon Echo have greater use in enterprises. Some game-changing technologies of 2017 are:
\n
\nINTERNET OF THINGS (IOT)
\n
\nDespite advancements, enterprises haven't adopted IoT on a large scale. 2017 will see better adoption with IoT being used for increased operational efficiency.The industrial sector already uses IoT for predictive maintenance of manufacturing equipment. As IoT becomes more mainstream, solutions like smart cars and smart buildings that integrate IoT with cognitive computing will emerge.
\n
\nAUTOMATION
\n
\nEvery aspect of the software lifecycle -coding, testing, deployment or operations -could be automated with DevOps playing an important role in the automation process. The next level is automation with cognitive intelligence, where machine learning or deep learning becomes crucial.
\n
\nIT solution providers have introduced comprehensive automation platforms, which integrate technologies like robotic process automation tools, cognitive computing and machine learning. This gives organisations flexibility to use automation for various stages of software development in an integrated manner thus eliminating the need for an engineer to first integrate various tools required.
\n
\nSince automation implies fewer jobs, a humane approach is necessary. This is possible with organisations creating a learning framework to up-skill affected employees with technologies that will remain relevant in future.
\n
\nCOGNITIVE COMPUTING
\n
\nCognitive Computing (CC) combines AI, Machine Learning, Deep Learning technologies. Though not mainstream now, it'll be crucial in future. CC doesn't need programming in the traditional sense. Here machines need to teach, learn and do things on their own -a paradigm shift from traditional application development. Mindtree and other major IT firms are collaborating with universities to develop this scarce CC talent pool which requires deep mathematics skills to understand and devise new algorithms in machine learning.
\n
\nCC has several applications ranging from image recognition to fraud detection to predictive analytics. Applications in the field of text and speech-based inputs are already powering conversational applications.Enterprises would leverage such conversational apps to automate their service desk or customer care centres. Here the customers will first start conversing with a robot, which will either use set of procedures to resolve the concern or route the conversation for complex cases to a person.
\n
\nCC will also power IoT applications in building predictive models and create uses like predictive maintenance in manufacturing, predictive churn management in Insurance, predictive inventory management in retail, etc.
\n
\nAUTONOMIC APPLICATIONS (AA)
\n
\nAA will catalyse the shift to NoOps wherein Applications will self-monitor, self-configure, self-optimise, self-manage and self-heal. While this is more suited for applications architected with cloud-first mindset, there are open source technologies like Apache Mesos and Marathon that can be deployed even in data centres for on premise applications.
\n
\nApplications using this can sense if there is an issue and take action in the existing data centre to bring down or bring up nodes or bring the entire application in another data centre (cloud or otherwise) and route all the traffic to the new data centre.
\n
\nThis will eliminate L1 & L2 tickets and L3 tickets where the Root-cause analysis and fixing of issues would be moved to engineering teams that push features to production and support those features.
\n
\nBLOCKCHAIN TECHNOLOGY
\n
\nBlockchain will be disruptive for multiple industry segments.With the distributed ledger at the core and a highly secure model to store transactions that are immutable, it becomes a technology that can be trusted by multiple parties involved in making transactions. Blockchain has applications beyond the financial domain too. These could be in banks coming together for reducing transaction time for cross-border payments, or stock market reducing time for derivative contract transactions, e-KYC and real estate contract implementation by governments, self-executing wills, etc.
\n
\nIn a nutshell 2017 will see IT solutions providers innovatively leveraging these technologies for the next-level of enterprise digital-transformation.<\/body>","next_sibling":[{"msid":56286538,"title":"Nagpur will become Wi-Fi enabled city by March 2017","entity_type":"ARTICLE","link":"\/news\/nagpur-will-become-wi-fi-enabled-city-by-march-2017\/56286538","category_name":null,"category_name_seo":"telecomnews"}],"related_content":[],"msid":56286680,"entity_type":"ARTICLE","title":"Consumer-oriented tech to shine in 2017","synopsis":"IoT, autonomic applications & blockchain tech to have greater use in enterprises","titleseo":"telecomnews\/consumer-oriented-tech-to-shine-in-2017","status":"ACTIVE","authors":[],"Alttitle":{"minfo":""},"artag":"ET Bureau","artdate":"2017-01-02 09:45:52","lastupd":"2017-01-02 09:50:11","breadcrumbTags":["MindTree","Insights","Devices","IoT","Pokemon Go","KM Madhusudhan"],"secinfo":{"seolocation":"telecomnews\/consumer-oriented-tech-to-shine-in-2017"}}" data-authors="[" "]" data-category-name="" data-category_id="" data-date="2017-01-02" data-index="article_1">
通过公里Madhusudhan首席技术官,MindTree
2016等技术物联网、自动化和认知计算超越概念阶段。专家以为,面向消费者的技术背后的口袋妖怪去(有世界级的增强现实)和智能家居解决方案的推出像谷歌和亚马逊回波有更大的企业使用。2017年改变游戏规则的技术有:
物联网(物联网)
尽管进步,企业没有采取大规模物联网。2017年将会看到更好的采用物联网被用于提高运营效率。工业部门已经使用物联网生产设备的预测性维护。随着物联网越来越主流,解决方案就像智能汽车和智能建筑集成物联网与认知计算将会出现。
自动化
软件生命周期的每一个方面的编码、测试、部署或操作——与DevOps自动化自动化过程中发挥着重要作用。下一个级别是与认知智能自动化,机器学习或深度学习变得至关重要。
IT解决方案提供商已经引入了综合自动化平台,整合技术像机器人过程自动化工具,认知计算和机器学习。这使组织灵活地使用自动化软件开发的不同阶段以集成的方式从而消除需要一个工程师首先需要整合各种工具。
自动化意味着更少的工作以来,人道的方法是必要的。这是可能的与组织创建一个学习框架能够学习到受影响的员工将在未来的技术。
认知计算
认知计算(CC)结合了人工智能,机器学习,深度学习技术。现在虽然不是主流,它将在未来是至关重要的。CC不需要传统意义上的编程。这机器需要教,学习和做事情靠自己——一个范式转换,即从传统的应用程序开发。Mindtree和其他主要企业与大学合作开发这个稀缺CC人才需要很深的数学技能,理解和设计新的机器学习算法。
CC有几个应用程序从图像识别欺诈检测预测分析。应用领域的文本和基于语音的输入已经推动对话的应用程序。企业会利用这样的对话应用自动化服务台或客户服务中心。这里的客户将首先与一个机器人开始的谈话中,将使用的过程来解决问题或路线复杂的情况下,对一个人的谈话。
CC还将电力物联网应用程序在建立预测模型并创建使用像预见性维护生产,预测生产管理保险,预测库存管理在零售等。
自主应用程序(AA)
AA将催化转变等待应用程序将自我监控,实现自配置、自self-optimise,自我管理和自我修复。虽然这是更适合的应用程序架构和云心态,有开源技术像Apache便和马拉松比赛,甚至可以部署在数据中心为前提的应用程序。
应用程序使用这个可以感知如果有一个问题,在现有数据中心采取行动降低或调出节点或整个应用程序在另一个数据中心(云或其他)和所有的流量路由到新数据中心。
这将消除L1和L2和L3票门票问题的根源分析和修复将会搬到工程团队,推动生产和支持这些功能特性。
区块链技术
区块链将破坏性的多个行业领域。分布式分类的核心和一个高度安全的模型存储事务是不可变的,它变成了一个可以信任的技术,由多个当事人在交易。区块链也应用在金融领域。这些可能在银行一起为减少交易时间跨境支付,或者股市衍生品合约交易,减少时间e-KYC和房地产合同实现由政府、self-executing遗嘱等。
简而言之2017年将看到IT解决方案提供商创新利用这些技术层次的企业数字化改造。
2016等技术物联网、自动化和认知计算超越概念阶段。专家以为,面向消费者的技术背后的口袋妖怪去(有世界级的增强现实)和智能家居解决方案的推出像谷歌和亚马逊回波有更大的企业使用。2017年改变游戏规则的技术有:
物联网(物联网)
尽管进步,企业没有采取大规模物联网。2017年将会看到更好的采用物联网被用于提高运营效率。工业部门已经使用物联网生产设备的预测性维护。随着物联网越来越主流,解决方案就像智能汽车和智能建筑集成物联网与认知计算将会出现。
自动化
软件生命周期的每一个方面的编码、测试、部署或操作——与DevOps自动化自动化过程中发挥着重要作用。下一个级别是与认知智能自动化,机器学习或深度学习变得至关重要。
IT解决方案提供商已经引入了综合自动化平台,整合技术像机器人过程自动化工具,认知计算和机器学习。这使组织灵活地使用自动化软件开发的不同阶段以集成的方式从而消除需要一个工程师首先需要整合各种工具。
自动化意味着更少的工作以来,人道的方法是必要的。这是可能的与组织创建一个学习框架能够学习到受影响的员工将在未来的技术。
认知计算
认知计算(CC)结合了人工智能,机器学习,深度学习技术。现在虽然不是主流,它将在未来是至关重要的。CC不需要传统意义上的编程。这机器需要教,学习和做事情靠自己——一个范式转换,即从传统的应用程序开发。Mindtree和其他主要企业与大学合作开发这个稀缺CC人才需要很深的数学技能,理解和设计新的机器学习算法。
CC有几个应用程序从图像识别欺诈检测预测分析。应用领域的文本和基于语音的输入已经推动对话的应用程序。企业会利用这样的对话应用自动化服务台或客户服务中心。这里的客户将首先与一个机器人开始的谈话中,将使用的过程来解决问题或路线复杂的情况下,对一个人的谈话。
CC还将电力物联网应用程序在建立预测模型并创建使用像预见性维护生产,预测生产管理保险,预测库存管理在零售等。
自主应用程序(AA)
AA将催化转变等待应用程序将自我监控,实现自配置、自self-optimise,自我管理和自我修复。虽然这是更适合的应用程序架构和云心态,有开源技术像Apache便和马拉松比赛,甚至可以部署在数据中心为前提的应用程序。
应用程序使用这个可以感知如果有一个问题,在现有数据中心采取行动降低或调出节点或整个应用程序在另一个数据中心(云或其他)和所有的流量路由到新数据中心。
这将消除L1和L2和L3票门票问题的根源分析和修复将会搬到工程团队,推动生产和支持这些功能特性。
区块链技术
区块链将破坏性的多个行业领域。分布式分类的核心和一个高度安全的模型存储事务是不可变的,它变成了一个可以信任的技术,由多个当事人在交易。区块链也应用在金融领域。这些可能在银行一起为减少交易时间跨境支付,或者股市衍生品合约交易,减少时间e-KYC和房地产合同实现由政府、self-executing遗嘱等。
简而言之2017年将看到IT解决方案提供商创新利用这些技术层次的企业数字化改造。
评论
现在评论 阅读评论(1)所有评论
找到这个评论进攻?
下面选择你的理由并单击submit按钮。这将提醒我们的版主采取行动